Step of Proof: bool_sq
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
bool
sq
:
1.
x
:
2.
y
:
3.
x
=
y
x
~
y
latex
by (let T = Unfold `bool`
in
in
((((((((((T 1)
i
CollapseTHEN (T 2))
)
i
CollapseTHEN (T 3))
)
iCo
CollapseTHEN (ApFunToHypEquands `z' case
z
of inl(
x
) =>
x
| inr(
x
) =>
x
Unit 3))
)
iCo
CollapseTHENM (ApFunToHypEquands `z' case
z
of inl(
x
) => True | inr(
x
) => False
3))
)
iCo
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t
iC
) inil_term)))
)
latex
iC
1
:
iC1:
1.
x
: ?Unit
iC1:
2.
y
: ?Unit
iC1:
3.
x
=
y
iC1:
4. case
x
of inl(
x
) =>
x
| inr(
x
) =>
x
= case
y
of inl(
x
) =>
x
| inr(
x
) =>
x
iC1:
5. case
x
of inl(
x
) => True | inr(
x
) => False = case
y
of inl(
x
) => True | inr(
x
) => False
iC1:
x
~
y
iC
.
Definitions
,
t
T
Lemmas
false
wf
,
true
wf
,
unit
wf
origin